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Abstract – In the paper, the power lines with flat arrangement 

of phases are considered. At the end of untransposed power lines, 

the unbalanced voltage appears. As an alternative to transposition, 

unbalanced load can be applied. Considerable difference of phase 

loads is the shortcoming of this method. A special increase of 

mutual inductance among outer phases would be a proper 

alternative if the way of its implementation would be found. Zero 

sequence is smaller for the line with overhead ground wires 

(OGW), especially when OGW is above the middle phase. Parallel 

lines have considerable mutual Fortesque impedances of all 

sequences, the most of them being zero sequence. The impact of 

parallel lines can be weakened by additive measures. Fault 

analysis of untransposed lines can be reduced to that of 

transposed. 
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I. INTRODUCTION 

Overhead power lines have a property comparatively few 

spoken about. They, considered in the 0-1-2 domain [1], besides 

impedances Z0, Z1, and Z2 have mutual impedances Z01, Z02, ....  

[2], which results in non-symmetrical voltages at the end of 

such lines.  

Unbalanced voltages are highly unwanted for the loads, 

especially for electrical motors as well as for other loads [3], 

[4], [5]. 

Balanced lines (with phase conductors arranged in the 

vertices of equilateral triangle) theoretically have not mutual 

impedances Z01, Z02, ...., but they are uncomfortable in their 

construction. 

Practical solution is such that, for balancing unbalanced 

lines, their transposition is used [6]; however, transposition is a 

costly measure [7]. It requires a special power-line support. 

Besides, as it is shown in [8], some types of relay protection can 

be implemented better without transposition. 

In [8], it is shown that voltage at the end of an untransposed 

power line can be balanced by a non-symmetrical load. The 

practical possibility of this measure will be investigated further 

by appropriate calculations. 

The issue has yet another side: 1) the overhead ground wires 

(OGW) are not conductive to balancing the power lines; 2) what 

is the situation with parallel lines, be they even balanced 

separately; this applies especially to double-circuit lines. It is 
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considered that in parallel lines the only mutual Fortesque 

impedance is that of zero sequence. This should be investigated 

how it is in reality. 

The relay protection of such lines is another bunch of 

questions which are to be clarified. 

II. DETERMINATION OF UNBALANCED LOAD 

Obviously, the voltage at the end of an untransposed power 

line will be balanced when the voltages of phases abc are 

related in such a way: 

       end.C
2

end.Bend.A UmmUU  ,      (1) 

where m is vector operator [1], but Uend (it is multiplied by 

det(ZL ABC Σ)) according to [8] are: 

 A
2

Aend.A )(U zaa   ; BB
2

end.B )( zaaU   ; 

       2

end.C C C( )U a a z     .      (2) 

 To make the calculation plausible, it is necessary to 

unscramble all the components of the expressions (2) referring 

to the sections 2 and 8 of [8], where zd = 0.148 + 0.7227i; 

zs = 0.05 + 0.3422; zf = 0.05 + 0.2987i. 

 A. Phase a located to the left of phase conductor flat 

arrangement (Fig. 1a) 

On the basis of [8] chapter 8, we have: 

 
2

scdbda ))(( zzzzz  ; ;)( scdfs zzzzz   

 fbd
2

s )( zzzz  ; 
2

fcdadb ))(( zzzzz  ; 

sadfs )( zzzzz  ; 
2

sbdadc ))(( zzzzz  .  (3) 

In (2), load impedance zA is set (after [8] it is equal to 

0.98 Ω). Loads in the phases b and c are to be found. In batch 

(2), two equations (bearing in mind (1)) are independent since, 

Fig. 1. Versions of phase a position. 
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the load impedance zA given, impedances zB and zC can be 

found. 

Inserting equations (3) in expressions (2) and observing (1), 

we have: 

0CCBBCBAend.A AzAzAzzzU  ; 

CBBCBBCBAend.B zzBzBzzzaU  ; 

CBBCCCCBAend.C
2 zzCzCzzzUa  ; 

AfdB )( zazzA  ; As
2

dC )( zzazA  ; 

Afd
2

sdf
22

s
2

d0 )]()([ zzzzazzzazzA s  ; 

2

B f d s d a d f s f( ) ( ) ( )B a z z z z z z z a z z      

sAd
2 )( zzza  ; sdBC azzB  ; 

 dAdsdffd
2

s
2

C )()()( zzzzzzazzzaC

sAs )( zazz  ; 2

BC d fC z a z  .   (4) 

Solving jointly aUend.B − Uend.A = 0 and a2Uend.C − Uend.A = 0, 

we obtain: 

0CB  FEzDz ;  BCBBCBB )( BACABD  ;  

BCCCBCC )BACCAE  ; 0BCBC )( ACBF  . (5) 

Since 

HGzz  CB ; DEG / ; DFH / .  (6) 

Inserting zB of (6) in a2Uend.C − Uend.A = 0, we obtain a 

quadratic equation: 

 0C
2

C  cbzaz ; GCa BC ; HCGAACb BCBCC  ; 

0B AHAc  .  (7) 

For imaginary part of zC to be positive, the square root must 

be negative: 

a

acbb
z

2

42

C


 . (8) 

Numerical results for the case in Fig. 1a are: 

zA = 0.98; zB = 0.8836 + 0.0447i; zC = 0.9360 + 0.1347i. 

Phase-to-phase loads have another character of distribution: 

zAB = 2.7766 − 0.0398i; zBC = 2.6574 + 0.3437i;  

zCA = 2.9590 + 0.2314i. 

Balancing the line with a set load in the phase a, which is 

located at the right side of the flat phase conductor displacement 

(Fig. 1c), we have the same results as in Fig. 1a.  

B. Phase a (with a set load) in the middle (Fig. 1b)

Some expressions are different from those of batch (3):

2

A d B d C f( )( )z z z z z     ; 
s f d C s( ) ;z z z z z   

s f d B s( )z z z z z    ; 2

B d A d C s( )( z )z z z z     ; 
2

s d A f( )z z z z    ; 2

C d A d B s( )( )z z z z z     . (9) 

The fillings of the coefficients AB, ..., H are different. 

Load impedances of the phases and phase-to-phase loads are 

the following: 

zA = 0.98; zB = 1.043 + 0.0966i; zC = 1.0841 − 0.0549i; 

zAB = 2.9590 + 0.2313i; zBC = 3.2863 + 0.0901i; 

zCA = 3.0693 − 0.1996i. 

The acquired data show that this method requires a large 

amount of unbalanced load. 

In [8], it is shown that a power line 

becomes balanced if all mutual 

impedances are equal. If in flat 

arrangement of phases, the mutual 

inductance between two outside 

phases were equal to that between 

adjacent phases, then the power line 

would become balanced. This could be 

possible if such an ideal transformer 

[9] existed with a predefined mutual impedance M between two

outer phases (Fig. 2). When a transformer is not ideal, on a par

with mutual inductance the extra inductance in each of two

phases appears. On the basis of [8], it can be said that an extra

phase-to-phase capacitance would not play a significant role.

III. POWER LINE WITH OVERHEAD GROUND WIRE

This power line is considered with one OGW (Fig. 3), which 

consists of one conductor with the same parameters as phase 

conductor. The OGW with less conductivity should have less 

influence on line unbalance. Mutual reactances are calculated 

by (13) of [8]: 

)/lg(0627972.0 jkzjk DDx     Ω/km, (10) 

where Djk is the distance between the conductors j and k 

(Fig. 3): zd = 0.148 + 0.7227i; zjk = 0.05 + xjk. 

For version a, mutual reactances between phase conductors 

are: xAB = xBA = 0.3422i; xAC = xCA = 0.2987i; 

xBC = xCB = 0.3422i. 

Mutual reactances between phase conductor and OGW are: 

 xAx = xxA = 0.3222i; xBx = xxB = 0.3088i; xCx = xxC = 0.2865i. 

In p. 9 of [1], it is shown that OGW causes a change in the 

components of zABC: 

d

xx
d

'

z

zz
zz

jj
jj  ; 

d

x'

z

zz
zz

xkj
jkjk  . (11) 

Fig. 3. Versions of OGW location and mutual distances. 
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For comparison, the impedance matrix without OGW ZABC, 

Z012 and with OGW Z’ABCc, Z’012 of versions a, b, c (Fig. 3) are 

shown. 

Recall that ZABC and Z012 impedance matrices of unbalanced 

lines look  

as:

    


















cccbca

bcbbba

acabaa

ABC

zzz

zzz

zzz

Z ;  



















22120

12110

02010

012

ZZZ

ZZZ

ZZZ

Z . (12) 

Their conversion is done by the expression (2.11) of [1], 

which for further references here is reproduced: 

          Z012 = AZABCA−1,       (13) 

where A – see [8]. 

The numerical results are shown below. 

For flat (horizontal) arrangement of a power line without 

OGW:     

       

 

























iii

iii

iii

Z

7227.01480.03422.00500.02987.00500.0

3422.00500.07227.01480.03422.00500.0

2987.00500.03422.00500.07227.01480.0

ABC ; 

























iii

iii

iii

Z

3950.00980.00145.00251.00072.00126.0

0145.00251.03950.00980.00072.00126.0

0072.00126.00073.00126.03781.12480.0

012 . 

Estimation of impedances: 

|Z1| = |Z2| = 0.407; |Z0| = 1.4002, it is 3.4403 times of |Z1|; 

|Z01| = |Z02| = |Z10| = |Z20| = 0.0146, it is 3.58 % of |Z1|; 

|Z12| = |Z21| = 0.029, it is 7.13 % of |Z1|. 

For a power line with OGW: 

version a: 

























iii

iii

iii

Z

6092.01316.02199.00339.01712.00340.0

2199.00339.05910.01322.02048.00345.0

1712.00340.02048.00345.05794.01328.0
'
ABC

; 

























iii

iii

iii

Z

3946.00981.00143.00247.00179.00049.0

0145.00247.03946.00981.00172.00040.0

0172.00040.00179.00049.09905.02004.0
'
012  

version b: 

























iii

iii

iii

Z

5910.01322.02048.00345.01670.00342.0

2048.00345.05794.01328.02048.00345.0

1670.00342.02048.00345.05910.01322.0
'
ABC ; 

























iii

iii

iii

Z

3949.00980.00146.00252.00046.00074.0

0145.00252.03949.00980.00042.00077.0

0042.00077.00046.00074.09715.02012.0
'
012

 

version c: 

























iii

iii

iii

Z

6250.01312.02364.00334.01803.00336.0

2364.00334.06081.01316.02140.00340.0

1803.00336.02140.00340.05794.01328.0
'
ABC

; 

























iii

iii

iii

Z

3939.00982.00136.00245.00257.00055.0

0139.00242.03939.00982.00252.00043.0

0252.00043.00257.00055.00246.11992.0
'
012 .

 

 

 

 

We can see that zero Fortesque impedance of the line with 

OGW of all versions is less than that of the line without OGW, 

while positive and negative sequence impedances are equal to 

each other and on the same level as for a line without OGW. 

Mutual impedances for all cases obey such coherences: 

Z12 ≈ Z21 and approximately the same for all cases and equal 

7 % of Z1; Z01 = Z20 and are greatest for the case c (6.5 % of Z1). 

To obtain evaluation of zero and negative sequence currents, 

we proceed in such a way as it was done in [8]. 

The percentage of three-phase short circuit zero sequence 

I0% and negative sequence I2% currents with respect to direct 

sequence current for flat arrangement of phases were calculated 

in [8]; there also the unbalance indices IL0% and IL2% were 

calculated for the same line loaded with resistance in each phase 

0.98 Ω: 

I0% = 1.11, I2% = 7.16, IL0% = 0.79, IL2% = 2.54. 

These indices, calculated for the same line with OGW 

(Fig. 2) using the same procedure as in [8], are shown below. 

Version a: I0% = 1.8, I2% = 7.05, IL0% = 1.17, IL2% = 2.5. 

Version b: I0% = 0.94, I2% = 7.17, IL0% = 0.57,  

IL2% = 2.53. 

Version c: I0% = 2.46, I2% = 6.93, IL0% = 1.64, IL2% = 2.46. 

It can be seen that the indices of zero sequence current of the 

line with OGW are worse for the versions a and c. The negative 

sequence current keeps approximately the same level. 

IV. PARALLEL POWER LINES 

For well-transposed [1], in other words – totally transposed 

[2], two parallel lines, the positive and negative sequence 

mutual impedances do not exist (they are zero), while it should 

be reckoned with zero sequence impedance. Well-transposed 

two parallel lines have 12 transpositions [2]: nine transpositions 

for the first line, and three for the second one. Since 

transposition is an expensive undertaking, it is worth to study 

how things are without transposition. A double-circuit line 

consists of two lines located near each other since they are hung 

on the same support. The impact of mutual impedances should 

be considered. 

Voltage drop in each phase of such a line consists of 6 terms – 

from its own current, currents of two remaining phases, and 

currents of three phases of the adjacent line: 

        ΔUABC = ZABC IABC,       (14) 

where 





























c'c'b'c'a'c'cc'bc'ac'

c'b''bb''ab'cb'bb'ab'

c'a'b'a'a'a'ca'ba'aa'

'cc'cbca'cccbca

'bc'bb'babcbbba

ac'ab'aa'acabaa

ABC

zzzzzz

zzzzzz

zzzzzz

zzzzzz

zzzzzz

zzzzzz

Z
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



























'c

'b

'a

c

b

a

ABCI

I

I

I

I

I

I

.(15) 
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Further it will be shown that two balanced but not transposed 

lines have mutual Fortesque impedances not only for zero 

sequences. For this reason, the arrangement of a double-circuit 

line is shown in Fig. 4. The phases are located in the vertices of 

equilateral triangles. 

Based on the sections 2 and 3, we have: zd = 0.148 + 0.7227i; 

zaa = zbb = zcc = za’a’ = zb’b’ = zc’c’ = zd; 

zab = zba = zbc = zcb = zca = zac = za’b’ = zb’a’ = zb’c’ = zc’b’ = zc’a’ = 

za’c’ = 0.05 + 0.3422i; 

zaa’ = za’a = zbb’ = zb’b = zcc’ = zc\’c = 0.05 + 0.2986i; 

zab’ = zb’a = zac’ = zc’a = 0.05 + 0.2751i; 

zbc’ = zc’b = zcb’ = zb’c = 0.05 + 0.2916i; 

zba’ = za’b = zca’ = zac’ = 0.05 + 0.3287i. 

 The matrix Zabc (see (15)) consists of four quarters with 

diagonals zaa zbb zcc; zaa’ zbb’ zcc’; za’a zb’b zc’c; za’a’ zb’b’ zc’c’. Each 

of these quarters is converted to a quarter in 012 domain

according to (13). Hence, we can write: 


























1

1

abc012
0

0

0

0

A

A
Z

A

A
Z .  (16) 

 This question is raised in [2], but a clear formula there is not 

given. 

Equations (14) and (15) in Fortesque notation are:  

ΔU012 = Z012I012,  (17) 

where according to (16) we have Z012 and I012 converted from 

Zabc and Iabc in a usual way ((13) and I012 = AIabc): 





























'2'1'2'0'22'21'20'2

'2'1'1'0'12'11'10'1

'2'0'0'1'02'01'00'0

'22'21'2022120

'12'11'1012110

'02'01'0002010

012

zzzzzz

zzzzzz

zzzzzz

zzzzzz

zzzzzz

zzzzzz

Z ;





























'2

'1

'0

2

1

0

012

I

I

I

I

I

I

I . (18) 

The numerical results are shown in the Tables I and II. 

TABLE I 

DATA OF Z012 FOR BALANCED PARALLEL LINES 

First 
symbol 

Second symbol  →   0;    1;    2;   0’;     1’; 2’

0 0.248 + 1.4071i   0;   0;    0.15 + 0.8955i;   0.0302i;   0.0302i 

1 0;   0.098 + 0.3805i;   0;      −0.0234i; 0.0001i;   −0.0069i 

2 0;   0;   0.098+0.3805i;    −0.0234i;   −0.0069i;   0.0001i 

0’ 0.15 + 0.8955i;   −0.0234i;   −0.0234i;  0.248 + 1.407i;   0;  
0 

1’ 0.0302i;   0.0001i;   −0.0069i;  0;   0.098 + 0.3805i;  

0 

2’ 0.0302i;   −0.0069i;   0.0001i;    0;   0;   0.098 + 0.3805i 

TABLE II 

COMPARATIVE DATA OF Z012 ABSOLUTE VALUES 

First 

symbol 
Zjj are given in Ω, the rest (Z01; Z00’...) – in % of Z11 

Second symbol  →    0;  1;  2;  0’;     1’;  2’

0 Z00 = 1.4288 = 3.6365 Z11;   0;  0;    231.10;  7.69;  7.69 

1 0;   Z11 = 0.3929;   0;    5.96;  0.03;  1.76 

2 0;  0;  Z22 = 0.3929 = Z11;    5.96;  1.76;  0.03 

0’ 231.10;  5.96;  5.96;    Z0’0’ = 1.4287 = 0.9993Z00;  0;  0 

1’ 7.69;  0.03;  1.76;    0;  Z1’1’ = 0.3929 = Z11;  0 

2’ 7.69;  1.76;  0.03;   0;  0;  Z2’2’ = 0.3929 = Z1’1’ 

The main impedances are: 

a) 0.248 + 1.4071i, absolute value (→)1.4288 – zero

sequence (z.s.) of each line separately, 3.6365 times of

positive sequence (p.s.);

b) 0.098+0.3805i→0.3929 – p.s. and negative sequence (n.s.)

of each line separately;

c) 0 – all mutual of each (balanced) line separately;

d) 0.15 + 0.8955i→0.908 – acknowledged mutual 

z.s.→231.10 % of p.s.; 63.55 % of z.s. of each line

separately.

Impedances a), b), and c) are such as each of two lines be a 

single one. There is no option of phase location of two parallel 

lines in such a way that all mutual distances between all phases 

would be equal. Be it so, without any transposition, the only 

mutual impedance would be that of zero sequence. 

 We can conclude that a parallel line has a tangible impact 

through its zero sequence current not only on zero sequence but 

on the positive and negative sequence of the adjacent line as 

well even when both lines are balanced. 

V. DOUBLE CIRCUIT LINE ON TOWER PB26

Another location of wires using the tower PB26 will be 

considered (Fig. 5). 

Firstly, we calculate the double-circuit line without OGW. 

Output data are given in the Tables III and IV. 

Fig. 4. Balanced power lines and 

mutual distances. 

4.957 m 

8 m 

4 m 

8.944 m 

11.637 m 

c 
b 

a 

c’ b’ 

a’ 

Fig. 5. Power line on tower PB26. 
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TABLE III 

DATA OF Z012 FOR PARALLEL LINES WITHOUT OGW USING TOWER PB 26  

First 

symbol 
Second symbol  →      0 ;                      1 ;                       2  ;       

                                     0’ ;                                 1’ ;                                    2’ ; 

0 0.2480 + 1.4116i;        0.0120 − 0.0069i;      − 

0.0120 − 0.0069i;                  0.1500 + 0.9667i;          
−0.0013 + 0.0007i;     0.0013 + 0.0007i 

1 −0.0120 − 0.0069i;        0.0980 + 0.3783i;     

−0.0240 + 0.0139i;             0.0013 + 0.0007i;          
0.0000 + 0.0199i;      −0.0148 + 0.0085i     

2 0.0120 − 0.0069i;        0.0240 + 0.0139i;       0.0980 + 0.3783i;                  

−0.0013 + 0.0007i;        0.0148 + 0.0085i;     

0.00000 + 0.0199i 

0’ 0.1500 + 0.9667i;        −0.0013 + 0.0007i;       

0.0013 + 0.0007i;                  0.2480 + 1.4116i;          

0.0120 − 0.0069i;      −0.0120 − 0.0069i 

1’ 0.0013 + 0.0007i;       0.0000 + 0.0199i;        −0.0148 

+ 0.0085i;                  −0.0120 − 0.0069i;       0.0980 + 

0.3783i;    −0.0240 + 0.0139i 

2’ −0.0013 + 0.0007i;        0.0148 + 0.0085i;       
0.0000 + 0.0199i;                0.0120 − 0.0069i;          

0.0240 + 0.0139i;       0.0980 + 0.3783i 

TABLE IV 

COMPARATIVE DATA OF Z012 ABSOLUTE VALUE FOR LINES WITHOUT OGW 

First 

symbol 
Zjj are given in Ω, the rest – in % of Z11 

Second symbol  →    0;       1;       2;       0’;     1’;      2’ 

0 Z00 = 1.4332 = 3.6673 Z11;             3.53; 3.53; 250.33; 0.36; 0.36 

1 3.53;               Z11 = 0.3908 Ω;                  7.09; 0.36; 5.09; 4.38 

2 3.53; 7.09;               Z22 = 0.3908 Ω = Z 11;          0.36; 4.38; 5.09 

0’ 250.33; 0.36; 0.36;          Z0’0’ = 1.4332 = Z00;            3.53;  3.53 

1’ 0.36; 5.09; 4.38; 3.53;              Z1’1’ = 0.3908 = Z11;               7.09 

2’ 0.36; 4.38; 5.09; 3.53; 7.09;                        Z2’2’ = 0.3908 = Z1’1’ 

 Unlike balanced parallel lines, mutual Fortesque impedances 

in each line separately are not equal to zero. 

 OGW brings in substantial changes as it is seen in the Tables 

V and VI. 

TABLE V 

DATA OF Z012 FOR PARALLEL LINES WITH OGW USING TOWER PB 26   

First 
symb 

Second symbol  →      0 ;                      1 ;                       2  ;       

                                     0’ ;                                 1’ ;                                    2’ ; 

0 0.2009+1.0125i;        0.0520−0.0265i;         − 0.0036−0.0260i;                  

0.1029+0.5693i;          −0.0076−0.0179i;       0.0092−0.0173i 

1 −0.0038−0.0255i;       0.0979+0.3771i;        −0.0229+0.0131i;                  
−0.0078−0.0186i;          0.0143+0.0077i;       0.0002+0.0189i    

2 0.0054−0.0260i;        0.0232+0.0129i;       0.0985+0.3771i;                  

−0.0078−0.0186i;          0.0143+0.0073i;       0.0002+0.0189i 

0’ 0.1029+0.5693i;        −0.0078−0.0186i;          0.0094−0.0180i;                  
0.2007+1.0328i;          −0.0087−0.0338i;       0.0102−0.0332i 

1’ 0.0092−0.0173i;        0.0002+0.0189i;          −0.0140+0.0080i;                  

0.0102−0.0332i;          0.0982+0.3940i;       −0.0376+0.0050i 

2’ −0.0076−0.0179i;        0.0143+0.0077i;          0.0002+0.0179i;                  
−0.0087−0.0338i;          0.0380+0.0047i;       0.0982+0.3940i 

 

TABLE VI 

COMPARATIVE DATA OF Z012 ABSOLUTE VALUE FOR LINE WITH OGW 

First 

symbol 
Zjj are given in Ω, the rest – in % of Z11 

Second symbol  →    0;       1;       2;       0’;     1’;      2’ 

0 Z00 = 1.0322 =2.6424 Z11;            14.99; 6.72; 148.49; 4.98; 5.03 

1 6.62;               Z11 = 0.3896 Ω;                    6.78; 5.18; 4.16; 4.85 

2 6.83; 6.80;        Z22 = 0.3898 Ω = 1.0005Z11;       5.18; 4.11; 4.85 

0’ 148.61; 5.18; 5.21;       Z0’0’ = 1.0521 = 1.0193Z00;       8.96; 8.91 

1’ 5.03; 4.85; 4.13; 8.91;        Z1’1’ = 0.4060 = 1.0421Z11;          9.73 

2’ 4.98; 4.16; 4.59; 8.96; 9.83;              Z2’2’ = 0.4061 = 1.00025Z1’1’ 

 In parallel lines with OGW, the positive and negative 

sequence impedances slightly differ within one line, and to a 

greater degree – between two lines.  

 Some mutual impedances of a line with OGW strongly differ 

from those of a line without OGW. 

VI. IMPACT ON RELAY PROTECTION 

 In further exposition, complex quantities are not specifically 

marked as having difficulty in writing and understanding. 

 In the lines, we see two types of irregularities: the first, 

mutual Fortesque impedances of a single line do not equal zero; 

the second, mutual impedances between parallel lines appear. 

If these effects are strong enough, they must be neutralized in 

the relay protection, but the ways to achieve this are different 

for both types of irregularities. 

 The numerical technique gives excellent possibility to cope 

with the irregularity of the second type, i.e., with the influence 

of a parallel line. This statement can be done by observing the 

expressions (14) and (15). 

 To leave behind in the expression (15) only quantities 

without dashes, it is necessary to subtract from Uabcm (Fig. 6a) 

defined by (19) 

aa a ab b ac c aa' a' ab' b' ac' c'

abcm ba a bb b bc c ba' a' bb' b' bc' c'

ca a cb b cc c ca' a' cb' b' cc' c'

z I z I z I z I z I z I

U z I z I z I z I z I z I

z I z I z I z I z I z I

 
 


 
  

; (19) 

dashed summand Uabc’ (Fig. 5b) defined by (20) 

                      



















c'cc'b''cb'a'ca

c'bc'b''bb'a'ba

c'ac'b''ab'a'aa

abc '

IzIzIz

IzIZIz

IzIzIz

U  ;   (20) 

and we shall have the remainder Uabc (Fig. 6b) defined by (21) 

Fig. 6. Elimination of parallel line influence. 
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

















cccbcbaca

cbcbbbaba

cacbabaaa

abc

z

IzIzIz

IzIZIz

IzIzI

U  ,    (21) 

which is apt for a single untransposed line.  

 Now we have to cope with the irregularity of the first type, 

namely, with mutual impedances between the phases of the 

same line. This case for single-phase-to-earth, phase-to-phase, 

phase-to-phase-to-earth faults was considered in [8], whereat 

was shown that in relay protection technique, an untransposed 

line can be reduced to a transposed one taking into account how 

the conductor of a special phase is disposed. 

 The essence of this measure is that instead of Fortesque 

impedances Z0, Z1, Z2, which moreover may not be equal (see 

Tables III–VI), the impedances Zu0, Zu1, Zu2 are employed. This 

gives an opportunity to exclude from consideration the mutual 

impedances between phases. Such impedances are different for 

specific types of short circuit, but expressions for short circuit 

calculation remain the same as for transposed lines. 

 Forasmuch as in some cases Zu1 ≠ Zu2, an approach to 

calculation of fault cases may be different from the 

conventional one. Such an approach is promoted by vast 

possibilities of the nowadays’ computer technique. After the 

impact of parallel line removed, we can begin the formation of 

relay protection of an untransposed line. In [8], it is shown that 

with untransposed lines the principle of relay protection 

remains the same as if instead of the Fortesque impedances Z012 

the impedances for untransposed lines Zu012 are used. In further 

considerations, the subscript u is omitted.  

 Recall the notation: 

   000 jXRZ  ; 111 jXRZ  ; 222 jXRZ  .  (22) 

For a considered line (or parallel lines), all components are 

known as linearly dependent on the positive sequence 

reactance: 

 100 XbR  ; 100 XcX  ; 111 XbR  ; 122 XbR  ;     

 122 XcX  .                  (23) 

 A. Single Phase-to-earth Fault 

 In one terminal line, the positive component of the short-

circuit current (as it derives from [10]) is: 

         )/( 2101 ZZZUI  ,     (24) 

where U is the faulty phase voltage at protection installation 

place; I1 is the positive sequence current. 

 Here, the well-known theory will be presented in another 

way. 

Protection operates when the first current component reaches 

its operation value I1op that takes place when the denominator 

of (24) assumes the value that is given by numerical impedance 

protection: 

      jXRZZZ
I

U
Zop  210

1

.   (25) 

Expression (24) can be overwritten as 

           
1 opU I Z .        (26) 

When fault occurs without fault resistance Rf, the operating 

impedance is: 

      221100opZ jXRjXRjXR  .  (27) 

Using (23) and denoting 

        b = b0 + b1 + b2; c = c0 + 1 + c2,   (28) 

we can overwrite (26): 

         )(1op jcbXZ  .       (29) 

Numerical protection gives operating impedance (25), and 

we have sought for the Fortesque impedance X1: 

          
b

R
X 1 ; 

c

X
X 1  .       (30) 

 When a fault occurs through the fault resistance Rf, we have 

        U = I1X1(b + jc) + I1Rf *,      (31) 

where under Rf
*, tripled resistance to earth is understood. 

 Numerical protection gives apparent impedance Zopa: 

      Zopa = U/I1 = Zop + Rf
* = Ra + jXa;     (32) 

         Ra = X1b + Rf
*; Xa = X1c.      (33) 

Out of (33) sought for positive sequence reactance to fault 

place and fault resistance readily can be found: 

      a

1

X
X

c
 ;  aa

*
f X

c

b
RR  .      (34) 

 The situation is much more complicated for a two-terminal 

line (Fig. 7) where the fault is fed from two sides. Monitoring 

the line from one side it is not possible to give a definite answer 

how far from the monitoring point the fault occurs. More 

information from the opposite terminal of the line or some 

assumptions are needed. The latest proposal assumes that the 

network is homogenous [11]. But this cannot always be correct.  

Fig. 7. Single phase-to-ground fault in a two-terminal power line. 
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 Here a different approach is presented using the fact that the 

system impedance Zs can be predefined. Observing Fig. 7, the 

expression (26) can be overwritten: 

  
*

f1op1
*

fr11op1 )1(Z)( RIIRIIZIU  ,   (35) 

where  – vide infra. 

 Applying loop current method [12], we have (see Fig. 6):  

       
D

RERZU
I

*
fs

*
fopr

1

)( 
 ;        

   
D

RZEUR
I

)(
*

fops
*

f
r1


          (36) 

and their ratio: 

 
)(

)(

s
*

fopr

*
fops

1

r1

UERUZ

UERZE

I

I s




 ; )Re('   ; )Im(''   .  

                       (37) 

Voltage U is: 

  )]''()'1([
*

f1
*

f11opa1 RcXjRbXIZIU   .  (38) 

According to (32), relay protection calculates Ra and Xa, 

which corresponding to (38) can be expressed as: 

   
*

f1a )'1( RbXR  ;  
*

f1a '' RcXX  ,    (39) 

where from we have sought for quantities: 

 
'')'1(

'')'1( aa
1





bc

RX
X




 ;  

'')'1(

aa*
f

 bc

bXcR
R




 .   (40) 

It would be easy to find X1 if the factor  would be known. 

Unfortunately, it can be known when, according to (37), Zop is 

known, which means – when X1 is known. However, this does 

not mean that there is a vicious circle because really two 

expressions (36) must be satisfied and that can be done only 

with definite values of Rf
* and Zop. But in two expressions (40), 

two more unknowns are present: χ’ and χ’’! Yet we should not 

forget the fact that  in (37) is the function of unknowns X1 and 

Rf
*. To break the vicious circle, in (40) for χ’ and χ’’ must stand 

f1(X1, Rf
*) and f2(X1, Rf

*) respectively. Such modified 

expressions (40) are too complicated to solve them analytically. 

A simpler solution is to apply the iteration method. 

 For Za (its components are Ra and Xa) given by relay 

protection, we assume some value of X1as
(0) and R*

fas
(0) = 0. 

After (31), we calculate  (1). With this value inserted in (40), 

we calculate X1
(1) and Rf

*(1). Inserting these values as assumed 

in (31) and (40), we calculate  (2), X1
(2),  Rf

*(2), and so on, until 

the next value is close enough to the previous one. 

 In the expressions (36) and (37), a fresh quantity appears: 

emf Es to the right of the line. This quantity is that very one 

which is assumed or calculated from the data of pre-fault mode. 

 B. Phase-to-phase Fault 

 The positive component of the short-circuit current is [10]: 

          
21

1
ZZ

U
I


 ,        (41) 

where U is the voltage of the intact phase at protection 

installation place; I1 is the positive sequence current. 

At short-circuit without fault resistance, we have: 

jXRjcbXjXRjXRZZZ  )(1221121op  

                       (42) 

where  

      b = b1 + b2; c = 1 + c2; R = bX1; X = cX1.  (43) 

 Sought for quantity X1 is defined by (30). 

When fault occurs through fault resistance Rf, we have: 

         1

1 2 f

U
I

Z Z R


 
;       (44) 

op f a a 1 f 1

1

Zopa
U

Z R R jX bX R jcX
I

         ;    (45) 

        Ra = bX1 + Rf ;  Xa = cX1 .      (46) 

Obviously 

       
c

X
X a

1  ;  aaf X
c

b
RR  .     (47) 

 For two-terminal line equations (35)...(40) hold when Rf 

stands for Rf
*. 

 C. Two Phase-to-ground Fault  

 For metallic short circuit, the known formula for positive 

sequence fault current is [10]: 

        

02

02
1

1

ZZ

ZZ
Z

U
I




 ,       (48) 

Fig. 8. Two-phase-to-ground fault: 

a – circuit diagram; b, c – equivalent diagrams. 
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since operating impedance is: 

      jXR
ZZ

ZZ
Z

I

U
Z 




02

02
1

1
op ,   (49) 

where R and X are given by numerical protection. 

 We shall consider a more complicated case when two short-

circuited phases close on the ground through fault resistance Rf 

(Fig. 8). 

 Then apparent operating impedance is: 

     aa
f02

f02
1opa

)(

)(
XR

RZZ

RZZ
ZZ 




 .    (50) 

To facilitate calculations, such notations are introduced 

(Fig. 8b): 

      f0f0 RZZ  ;  
f02

f02
opa

ZZ

ZZ
Z


 .     (51) 

Using abc-phase currents, all three current sequences I0, I1 

and I2 can be filtered. But we will need I0 and I1. 

From Fig. 8b, c follows that 

              
f02

2

1

0

ZZ

Z

I

I


 ;  q

I

I


1

0  .      (52) 

Hence, 

  2f0

1
Z

q

q
Z


 ; '''

1
jkk

q

q
k 


 ; 2f0 kZZ  .   (53) 

From (49), using (51), through intermediate quantities (54) 

we arrive to the final formula (55): 

      
0f 0 0k kZ R jX  ; 220 ''' XkRkRk  ;    

 220 ''' RkXkX k  ; 
kk

kk

jXR

jXR
Z




 11

opa ;  

 02021 kkk XXRRR  ; 02021 kkk RXXRX  ; 

 02 kk RRR  ; 02 kk XXX  ; 
D

jXR
Z kk 22

opa


 ; 

   kkkkk XXRRR 112  ; kkkkk XRRXX 112  ;   

 22
kk XRD  .                 (54) 

  2 2

opa a a 1 1

1

k kR jXU
Z R jX R jX

I D


      .   (55) 

 Isolating in (55) imaginary component and expressing Rk2, 

Xk2 and D by (22) and (23), we have: 

      
d

xX
XX k21

1a  ; 
dx

X
X

k /1 2

a
1


 ,     (56) 

where 

22 kk xrd  ; kkkkk xxrrr 112  ; kkkkk xrrxx 112  ; 

02021 kkk xcrbr  ; 02021 kkk rcxbx  ; 02 kk rbr  ; 

2 0k kx c x  ; 
0 2 2' ''kr k b k c  ; 

0 2 2' ''kx k c k b  .    (57) 

 To define the fault resistance Rf, we use the first expression 

of batch (54): 

    )'''()Re( 2210f0f0 ckbkXRZR k  ,   (58) 

    )'''( 02210f0f bckbkXRRR   .    (59) 

 Numerical check confirms the derived expressions. 

 The two-terminal line requires iterative calculations of X1. 

The fault is fed from two sides (Fig. 9a). To define the distance 

to fault place (it is the same as to define the unknown X1), the 

measured data of U and I are insufficient. It is to be known extra 

one quantity from the right side of the fault. Here it is meant 

that this quantity is emf Es. Summary impedances ZΣ are known 

initially. So, to the right of the fault place, we have impedances 

Zr: 

          ZZZ  r ,        (60) 

where Z is sought for impedance from the monitoring point to 

fault place. 

To calculate any impedance Zr, it is necessary to assume 

some impedance X1as and then, observing (22) and (23), to 

determine all the necessary impedances Zr basing on reactance 

X1as, which is the product of specific reactance x1 and assumed 

as distance to fault place las. 

 In accordance with Fig. 9b, c: 

 
r22

2r2
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Z


 ;

0r0

0r0
e0

ZZ

ZZ
Z


 ; e0f0fe ZRZ  .   (61) 

 Summary direct sequence current is: 

        11r11 IIII  ,        (62) 

where   is a presumed, as yet unknown, factor. To define the 

current I1r, we must know Z3 [12] which is the result of Z2e and 

Z0fe parallel connection (Fig. 9d): 

         
fe02e

fe02e
3

ZZ

ZZ
Z


  .       (63) 

But we cannot determine Z3 since we do not know Z0fe, 

because the fault resistance Rf is the second, besides X1, 

unknown. It is unproductive to assume two quantities X1 and Rf. 

 Similarly as for one-terminal line (see (52)), we presume 

         
fe02e

e2

1

0

ZZ

Z

I

I
q






 .       (64) 
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Fig. 9. Two-phase-to-ground fault in a two-terminal line: 

a, b, c, d – consecutive circuit diagrams in line with mathematical 
considerations. 
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Based on Fig. 9b and expressions (52) and (64), we have: 
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Through the string of formulas: 
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Using loop current method [12] we find I1r /I1: 
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Quantity  defined by (63) can be redefined: 
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where from 
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Apparent impedance given by protection observing Fig. 9d 

is: 

     ZZIUXjRZ   11aaa / .     (70) 

So far as through Z3 current I1 + I1r flows, the source of the 

current I1 feels besides impedance Z1, yet the impedance Z  

which is   times grater than  Z3: 

              3ZZ   .        (71) 

For assumed X1as (for assumed distance las), the result of the 

first iteration is obtained. Isolating imaginary and real 

components of (70) we have: 
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At that iterations converge faster when 
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With more iterations, Rf  converges to real value (see (61). 

 For reverse fault, X1
(1) is negative for a positive value of X1as. 

 The numerical example: U = 10 V; Es = 12 V; llin = 20 km; 

x1 = 0.4 Ω/km; b1 = b2 = 0.25; c2 = 1; b0 = 0.375; c0 = 3; 

Z1s = 0.5 + 3i; Z2s = 0.5 + 4i; Z0s = 0.75 + 4i. Two-phase to 

earth fault with Rf = 5 Ω occurs at 10 km from protection. At 

las
(1) = 15 km  l(1) = 3.8615 km, Rf

(1) = 5.6255 + j0.7489 Ω; at 

las
(2) = (15 + 3.8615) / 2 = 9.43077 km l(2) = 10.6175 km, 

Rf
(2) = 4.8328 + j0.0789 Ω; ... las

(4) = 9.9988 km, 

l(4) = 10.0013 km, Rf
(4) = 4.9997 + j0.00016 Ω. 

VII. CONCLUSION 

1. Balancing the power line with an unbalanced load requires 

large load disbalance. It would be beneficial to investigate the 

possibility of balancing the power line by way of artificially 

increasing the mutual impedance between outer phases of flat 

arrangement. 

 2.  For flat arrangement, the indices of zero sequence current 

are best when OGW is over the middle phase and slightly 

smaller than for the line without OGW. Negative sequence 

current changes little. 

 3. Two parallel balanced but not transposed lines and double-

circuit lines without OGW have external mutual Fortesque 

impedances between all sequences. 

 5. Some mutual impedances of the line with OGW strongly 

differ from those without OGW. 

 6. The impact of mutual impedances between parallel lines 

can be eliminated by additive measures. 

 7. Fault analysis of untransposed lines can be reduced to that 

of transposed ones provided that Z1 ≠ Z2 is accepted. 

 8. Fault calculations can be made easier when complex 

Fortesque impedances are described through positive sequence 

reactance to fault place. 

 9. To define fault location in a two-terminal line, measured 

data only from monitored side are insufficient. Some 

trustworthy assumption or extra value is necessary. 

 10. The most complicated case of distance determination is 

for two phase-to-ground fault through fault resistance in a two-

terminal line.  
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