Operator Method for Nonstationary Temperature Field Calculation in Thick-walled Cylindrical Heat Pipe Environment

Voldemārs Barkāns

Abstract


The paper is dedicated to the exploration of one of the methods of renewable energy research. A significance lies in the economically efficient facilities; therefore, it is important to establish distribution of temperatures in the parts of facilities. Considering a nonstationary process, the temperature field is described in the polar coordinate system by using Laplace’s equation and corresponding mixed-type boundary data. The solution was obtained by the Laplace Transform Method, applying an integral function of complex variables. The inverse Laplace Transform and the original temperature are expressed as an integral. For the integration, a closed contour, which excludes branching and provides the integral of a function that is analytic, was employed. The Cauchy theorem was applied to the calculations. As a result, indefinite integrals were derived for the temperature estimate in the heat pipe cover and the surrounding environment, depending on the temperature of a fluid within the heat pipe.


Keywords:

Laplace Transform; solar thermal collectors; thermal conductivity.

Full Text:

PDF

References


V. Barkāns, et al., “Nonstationary Heat conduction process on a Solar Collector,” in 9th Int. Conf. Maritime transport and infrastructure, Riga: Latvian Maritime Academy, 2007, pp. 214–225.

V. Barkāns, P. Šipkovs and M. Vanags, “Temperature Field in the Heatex-changer of a hot water Accumulator,” in 10th Int. Conf. Maritime transport and Infrastructure, Riga: Latvian Maritime Academy, 2008, pp. 221–225.

V. P. Isachenko, V. A. Osipova and A. S. Sukomel, Teploperedacha, Moscow: Energija, 1969, p. 440. (in Russian)

E. M. Kartashow, Analiticheskije metodi v teorii teploprovodnosti tverdix tel, Moscow: Vishaja shkola, 2001, p. 550. (in Russian)

A. V. Likov, Teplomassoobmen, Moscow: Energija, 1972, p. 560. (in Russian)

H. S. Carslaw and J. C. Jaeger, Teploprovodnostj tverdih tel, Moscow: Nauka, 1964, p. 487. (in Russian)

H. S. Carslaw and J. C. Jaeger, Operacionnie metodi v prikladoj matematike, Moscow: IL, 1948, p. 293. (in Russian)

M. A. Lavrentjev and B. V. Šabat, Metodi teorii funkcij kompleksnogo peremennogo, Moscow: Nauka, 1958, p. 678. (in Russian)

N. S. Košljakov, E. B. Gliner and M. M. Smirnov, Osnovnije differenciljnije uravnenija matematitcheskoj fiziki, Moscow: Fizmat-giz, 1962, p. 768. (in Russian)

A. N. Tihonov and A. A. Samarskij, Uuravnenija matematitcheskoj fiziki, Moscow: Nauka, 1956, p. 724. (in Russian)

E. Riekstiņš, Matematiskās fizikas metodes, Riga: Zvaigzne, 1969, p. 620. (in Latvian)

G. Doetsch, Rukovodstvo k praktitcheskomu primeneniju preobrazovanija Laplassa i Z-preobrazovanija, Moscow: Nauka, 1971, p. 288. (in Russian)

G. N. Watson, Teorija besselevih funkcij, Moscow: IL, 1949, p. 787. (in Russian)

A. Gray and G. B. Mathews, Funkcii Besselja i ih priloženija k fizike I mehanike, Moscow: IL, 1953, p. 372. (in Russian)

E. Janke, F. Emde and F. Losch, Specialjnije funkcii, formuli, grafiki, tablici, Moscow: Fizmat-giz, 1968, p. 344. (in Russian)

B. Key, “Heat Recovery from Chilled Water Systems,” Carrier, USA, 2008, p. 20.

K. D. Rafferty, “Absorbtion refrigeration. Geo-Heat Center Klamath Falls,” OR 97601, 2009, pp. 299–306.

S. V. Patancar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. of Heat and Mass Transfer, vol. 15, issue 10, p. 1787, 1972. http://dx.doi.org/10.1016/0017-9310(72)90054-3

K. Sopian, et al., “Performance of a non-metallic unglazed solar water heater with integrated storage system,” Renewable energy, vol. 29, issue 9, pp. 1421–1430, 2004. http://dx.doi.org/10.1016/j.renene.2004.01.002

R. S. Gorla, “Finite element analysis of a flat plate solar collector,” Finite Elements in Analysis and Design, vol. 24, issue 4, pp. 283–290, 1997. http://dx.doi.org/10.1016/s0168-874x(96)00067-4

O. Turgut and N. Onur, “Three-dimensional numerical and experimental study of forced convection heat transfer on solar collector surface,” International Communication in Heat and Mass Transfer, vol. 36, pp. 274–279, 2009. http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.10.017




DOI: 10.7250/pee.2016.001

Refbacks

  • There are currently no refbacks.